Sediment transport and morphology changes in river mouths and estuaries

Małgorzata Robakiewicz Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk, Poland

International Conference on the Dynamics of Coastal Zone of Non-Tidal Seas Baltiysk (Kaliningrad Oblast), 30 June – 5 July, 2008

transition between land and sea mixing of fresh and salt water abundant fine sediment morphologically dynamic environmentally rich

economically attractive

Scales of processes

- <u>Micro-scale</u> concerning small scale flow, sediment transport (graingrain, sand-mud interactions), morphological processes (bed ripples)
- <u>Meso-scale</u> sub-system elements (individual channels, shoals in one sub-basin of a coastal lagoon)
- <u>Macro-scale</u> sub-system as a whole (e.g. formation of channel patterns within an estaury)
- <u>Mega-scale</u> the system as a whole (e.g. behaviour of an entire lagoon system)

Vistula River and its estuary

length - 1047 km catchment - 194 000 km² Q_{mean} - 1080 m³/s Q_{min} - 253 m³/s Q_{max} - 7840 m³/s

Vistula River mouth - history

XVIII century

1700, 1706, 1709, 1713, 1717-1721, 1736-1738, 1742, 1744-1745, 1749, 1761, 1764-1765, 1780, 1782, 1785, 1789, 1794, 1813, 1816, 1829, 1855

~10000 inhabitants lost houses cost of damage: 30 mln Preussian mark (~120 mln USD today)

Regulation 1890 - 1895

opening 31.03.1895

Regulation – short term consequences

Regulation – jetties elongation

Bathymetry of the Vistula outlet

Regulation – present status

Development of marine alluvial fan

- *directly after cross-cut in 1895 (approx.10mln m³)*
- backward erosion of the river bed (ended in 30's)
- cut-off of the Nogat branch in 1915
- sedimentation supply by the river $(0.6-1.5 \text{ mln m}^3/\text{year})$
- sedimentation due to wave action
- erosion due to waves and local currents (100 000 –130 000 m³/year)

Sedimentation of alluvial fan 1894-2003

period	mln m ³ /year
1896-1920	1.9
1920-1945	1.6
1945-1970	1.0
1970-1995	0.4-0.6

<u>sediment size (</u> d ₅₀)		
0.55-1.0 mm - fan channels		
0.25-1.0 mm - plateau of the fan		
0.18-0.25 mm - coast adjacent to the fan		

Modelling of rivers and estuaries

1-D approach

used to simulate the large-scale morhological changes in rivers and estuaries;

analytical solutions - simple schematized cases

numerical solutions - more realistic cases

e.g non-uniformity of bed material – number of size classes

Modelling of rivers and estuaries

2-DV approach

applied to predict transport rates, sedimentation and erosion in <u>rivers</u>, estuaries and coastal waters

in rivers – sedimentation in pipelines, tunnel trenches, settling traps for irrigation channels

2-DH approach

based on the depth-integrated equations of motion in combination with a sediment transport model application: eg. bed evolution in a river bend

Modelling of rivers and estuaries

<u>3-D approach</u> - used for a wide range of horizontal scales (estuaries, coastal sea)

One-phase Models

- passive scalar hypothesis
- no fluid-particles interactions
- settling velocity of solid particles by empirics
- fluid-bed interaction by empirical formulas for deposit and erosion fluxes
- extra models for consolidation of solid particles

Two-phase Models

- no *passive scalar* hypothesis
- fluid-particles interaction
- settling velocity of solid particles by the models
- fluid-bed interaction by the models
- consolidation process included in the models

Modelling of Vistula estuary

The main goal:

to support regional administration (Regional Water Board in Gdańsk) with the concept to improve the navigation conditions in the river mouth (also in <u>winter conditions</u>)

The main effort focused on searching a solution which:

- enable concentration of the main channel into a relativel narrow channel,
- make use of natural capacity of river to self cleaning.

Vistula River in winter 2002/2003

alluvial fun in winter

right river bank

Modelling of Vistula estuary

Delft3D

- Curvilinear orthogonal grid
- σ co-ordinates in vertical (Phillips, 1957)

$$\sigma = \frac{z - \varsigma}{\varsigma + d} = \frac{z - \varsigma}{H}$$

d - depth below the reference level;

 ς - free surface elevation above the reference level;

 $H=d+\varsigma$ - total depth;

Characteristic discharges (m³/s) in years 1951-1990

WWO SSQ NNQ period SWO **SNQ** XI XII Ι Π Ш IV V VI VII VIII IX X vear

Characteristic discharges (m^3/s) 1.11.2001 - 31.10.2002

period	WWQ	SSQ	NNQ
XI	1210	1070	932
XII	1140	927	660
Ι	3720	1300	764
II	4320	3220	2380
III	2920	2340	1820
IV	1820	1400	1070
V	1070	814	652
VI	1850	1290	770
VII	1170	816	643
VIII	1250	754	594
IX	730	541	483
X	1340	825	483
year		1260	

Average discharge with a given time of duration

in years 1951-1990 [m³/s]

% of years	days in years	Discharge [m ³ /s]
1	3.6	3840
3	11.0	2850
5	18.3	2420
10	36.5	1900
15	54.8	1600
25	91.3	1280
50	182.6	882
75	273.9	640
85	310.5	545
90	328.7	488
95	347.0	422
97	354.3	392
99	361.6	342

Wave characteristics calculated based on wind conditions – depth 20 m

wind	wind speed	frequency in	wave period	wave height
direction	[m/s]	year [%]	[s]	[m]
w	6	7.45	2.6	0.31
	10	3.12	3.5	0.59
	14	0.83	4.4	0.96
	18 6 10	0.06 5.15	5.1	1.03
NW	10 14 18 20	0.64 0.012 0.008	5.8 6.7 7.5 8.4	1.10 1.63 2.18 2.74
N	6	2.91	5.2	0.97
	10	0.91	5.6	1.21
	14	0.25	6.7	1.76
	18	0.012	7.4	2.31
	20	0.008	8.2	2.71
NE	6	3.33	3.5	0.46
	10	0.91	5.9	1.26
	14	0.22	4.7	1.70
Е	6	5.34	3.2	0.42
	10	2.39	3.6	0.62
	14	0.30	4.6	0.83

Modelling of Vistula estuary hydro- and lithodynamics

- I zero option present situation
- II flushing
- III execution of narrow deep channel
- IV extension of two breakwaters as parallel constructions
- V extension of two breakwaters as contructing constructions
- VI construction of eastern breakwater

I – present situation

Breakwaters – present situation

Mean annual discharge in 2002 – 1 year calculation

difference

II - flushing

iniatial bathymetry 2002/2003 calculated bathymetry Breakwaters – present situation Discharge of 1% probability Q =3840m³/s Duration 3.6 days

III - execution of narrow deep channel

SANNOD SANARD SANA

iniatial bathymetry 2002/2003 Breakwaters – present situation Discharge of 15% probability Q =1600m³/s Duration 3 months

difference

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwaters – present situation and execution of narrow channel Discharge of 15% probability Q =1600m³/s Duration 3 months

IV – two breakwaters

A – *short* breakwataers: eastern - extended 480 m, western - extended 310 m B – *medium* breakwaters: eastern - extended 760 m, western - extended 560 m C – *long* breakwaters: eastern - extended 900 m,

western - extended 690 m

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwaters extended: eastern – 480 m, weastern – 310 m Mean annual discharge 2002 - Q =1080m³/s Duration 1 year

short

medium

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwaters extended: eastern – 760 m, weastern – 560 m Mean annual discharge 2002 - Q =1080m³/s Duration 1 year

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwaters extended: eastern – 480 m, weastern – 310 m Mean annual discharge 2002 - Q =1080m³/s Duration 10 years

short

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwaters extended: eastern – 900 m, weastern – 690 m Mean annual discharge 2002 - Q =1080m³/s Duration 10 years

long

V - extension of two breakwaters as contructing constructions

Exteded as *medium* breakwaters:

- eastern extended 720 m
- western extended 580 m

Distance between breakwaters: at the river mouth - 450 m at the head of breakwater - 350 m

Mean annual discharge 2002 - Q =1080m³/s Duration 10 years

iniatial bathymetry 2002/2003

difference

Contructing breakwaters Breakwaters extended: eastern – 720 m, weastern – 580 m Mean annual discharge 2002 - Q =1080m³/s Duration 10 years

calculated bathymetry

narrowing

VI – estern breakwater extended

A - *short* exteded - 480 m

C - *long* exteded - 900 m

short

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwater extended: eastern – 480 m Mean annual discharge 2002 - Q =1080m³/s Duration 10 years

long

iniatial bathymetry 2002/2003 calculated bathymetry difference Breakwater extended: eastern – 900 m Mean annual discharge 2002 - Q =1080m³/s Duration 10 years

