

Littoral-pelagial water exchange due to convective mechanisms

Irina Chubarenko

P.P.Shirshov Institute of Oceanology, Atlantic Branch, Kaliningrad

Differential coastal cooling: Examples Day/night variations

2

Seasonal scale:

Autumnal cooling

Spring heating

Tikhomirov, 1982

Averaged data:

SST of the Baltic for the week 43 (26-30 October) 2005 NOAA/AVHRR (<u>http://wwwi4.ymparisto.fi</u>)

Averaged T over 1 month

Mean annual SST in October in the Caspian Sea (Atlas of the Shelf Seas of the USSR)

What a motions are behind these temperature gradients?

0.1. Why and how do the horizontal gradients appear?

0.2. Development of the horizontal exchange with time

The dynamics of water exchange

1. Cascading

Characteristic features of the flow:

- no final steady state

-the flow is the combination of vertical convection and horizontal advection

- horizontal velocity maxima are inside the layer

Velocity profiles

 Δ T up to 1.7 °C , larger for gentle slopes

Cooling from the surface 3D-nonhydrostatic model MIKE3-FlowModel

5 km

2 km x 5 km x 50 m

Field measurements: Lake Geneva

Winter cascading of cold water in Lake Geneva I.Fer, U.Lemmin, S. A. Thorpe JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C6, 10.1029/2001JC000828, 2002

Lake Consance

The Baltic Sea, October, 2006

The Baltic Sea:

area, where vertical convection reaches the bottom

2. Upwelling

What is the reason for this flow?

$$\Delta p = \alpha_* g \int_0^d \left[T(x_d, z, t) - T(x_{any\delta}, z, t) \right] dz = \alpha_* g \frac{\left(T_{coast} - T_0 \right)}{\beta} d \left(D - d \right) \exp(-\frac{d}{D}).$$

This function has a maximum $(\Delta p)' = 0$ at d = 0.38D

Numerical modelling, MIKE3-FlowModel

3D, non-hydrostatic, linear initial Tstratification, A=0.01, 1 m vertical layer, grid 100 x 30 cells, 50 x 50 m, time step 3 s, day-night variations, solar heating at mid-latitudes, T_{air} =30 C, $T_{in, water surface}$ = 22 C, 10 days, no wind

Horizontal water temperature and vertical velocity profiles in sub-surface layer

03/01/06 00:00:00:000

Field data: the Baltic Sea

Coastal heating: ΔT(horiz)=4.27°/62 km

Yacht «Aquarius»

«Aquarius» + «Prof.Stockman» + measurements at spit

Estonia, August 2006

220 Ü. Suursaar, R. Aps

Fig. 6. Vertical profiles of salinity (a), temperature (b) and fluorescence (c), and the averages of three parallel samples of P_{tot} taken from the upper 1 m layer during the three surveys (d) near Kunda. Only the August profiles represent upwelling conditions

3. Change of the structure: Thermal bar

Numerical modelling, MIKE3-FlowModel

Monitoring IOW, May 2005 г.

Day/night circulation

9:00 24 February

12:00 24 February

Wellington Reservoir, Australia Monismith et al., 1985

Phase curve Q(dT) for the process, plotted for the simulated data at 6 vertical cross-sections.Maximum Q never coincides with maximum dT, and the delay depends on the length along the slope. This shows that in fact the currents are never in phase with external forcing.

Volumetric flow-rate

For the scale of the volumetric flow-rate we have:

$$Q \sim u \cdot h = \left[\frac{\Delta \rho}{\rho} \cdot g \cdot h\right]^{\frac{1}{2}} \cdot h \sim h^{1.5}$$

Horsh&Stefan, 1988; Horsh, et al., 1994:

$$Q \sim Ra^{\frac{1}{n}}$$
, where $2 < n < 3$

 $\rightarrow Q \sim h^{1.3\div 2}$

Sturman et al. (1999)

$$Q = 0.24 B^{1/3} (l \tan \theta / (1 + \tan \theta))^{4/3}.$$

Rossby, 1965 (no slope)

$$V \sim \kappa_T R a_F^{1/6} \longrightarrow V \sim L^{0.66}$$

Steady-state horizontal flow-rate versus the thickness of the thermally affected layer

-the exchange embraces the entire basin in horizontal, and is generally two-layered in vertical;

-horizontal convective exchange flows are unsteady (even under constant external conditions); 3-dimensional, prone to the formation of the convective cells, rolls etc.;

- the flow is inertial; currents lag after external forcing;

- for the volumetric flow-rate and flushing time, the main governing parameter is the thickness of the thermally-affected layer; surface buoyancy flux and bottom slope are less important;

-the horizontal convective exchange is larger (i) at the end of the slope, (ii) near gentle rather than steep slope, (iii) under stronger surface heat fluxes.

for your attention!

